

Abstract— Fisheye lenses are often used in scientific or
virtual reality applications to enlarge the field of view of a
conventional camera. Fisheye lens distortion correction is an
image processing application which transforms the distorted
fisheye images back to the natural-looking perspective space.
This application is characterized by non-linear streaming
memory access patterns that make main memory bandwidth
a key performance limiter.

We have developed a fisheye lens distortion correction
system on a custom board that includes a Xilinx Virtex-4
FPGA. We express the application in a high level streaming
language, and we utilize Proteus, an architectural synthesis
tool (described in [4][5]), to quickly explore the design space
and generate the streaming accelerator best suited for our
cost and performance constraints. This paper shows that
appropriate ESL tools enable rapid prototyping and design
of real-life, performance critical and cost sensitive systems
with complex memory access patterns and hardware-
software interaction mechanisms.

I. INTRODUCTION
Recent advances in reconfigurable technology have expanded

the application domains for which a reconfigurable system offers
the best performance versus cost ratio. The new paradigm of
spatial computation enables the design and deployment of
FPGA-based SoCs with complex hardware and software
components [26]. In particular, modern FPGAs are used in
“smart camera” systems to accelerate real-time, H.264/AVC
video encoding [30], high image quality medical visualization
[17], or image analysis and pattern recognition [5].

Fisheye lenses allow imaging a large sector of the surrounding
space instantaneously. While ordinary rectilinear lenses map
incoming light rays to a planar photosensitive surface, fisheye
lenses map them to a spherical surface, which is capable for a
much wider field of view (FoV). It is possible, and in fact very
common, for fisheye lens to encompass a FoV of 180o. Such
hemispherical images have been traditionally used for
specialized applications such as surveillance [23], robot
navigation [13], content creation for immersive environments
and virtual reality [27], photography [29], astronomy, etc.

Fisheye (or, generally, wide-angle) imaging can be used in
more mainstream applications such as consumer digital imaging

and video capture. By capturing a larger section of the
surrounding space, a fisheye lens camera affords a wider
horizontal and vertical viewing angle, provided that the distorted
images at the fisheye space can be corrected and transformed
into the perspective space in real time (Figure 1). Real-time
distortion correction for megapixel frame resolution is possible
using specialized hardware or powerful desktop graphics
processors, but beyond the reach of today’s embedded
processors or DSPs, as we will show in section IV.D.

In this paper, we describe the design and implementation of a
real-time fisheye lens distortion correction module using the
Proteus architectural synthesis tool [4][5]. The module is part of
an FPGA-based camera system which tracks the region of
interest (ROI) within the frame using input from the user and
then corrects the ROI in real-time before storing or transmitting
the data to the other end.

We first lay out the geometric properties of the fisheye lens
distortion correction, and we explain the algorithmic aspects of
the computational flow in section II. The focus is on the
challenges of mapping this application into efficient hardware,
and, in particular, on the non-linear memory access patterns and
the need for optimizations to increase the effective bandwidth
between the accelerator and the main memory (section III.A).
We make use of the on-chip memory bandwidth available in
FPGAs by organizing the computations around tiled datasets,
and then expressing the application in a streaming data flow
language (section III.C).

Using the Proteus toolset and programming methodology, we
produce hardware accelerators that follow the streaming
architectural paradigm [1][4][5][8]. Automation allows us to
quickly explore different Pareto-optimal implementations that
span the whole area versus throughput design space as described
in section IV.A. An implementation that meets the system
requirements as well as results on an implementation in a Virtex-
4 FPGA is described in section IV.B.

Not all tasks in a complete system should be accelerated to
hardware. Tasks that are control-intensive or occur infrequently
are left in software executed in the scalar processor of the FPGA.
The hardware-software interaction is an important component of
this design, and more so because optimizations such as tiling
impose extra burdens on the software-hardware communication
overhead (section IV.C).

Real-Time Fisheye Lens Distortion Correction
Using Automatically Generated Streaming

Accelerators

Nikolaos Bellas1 Sek M. Chai2

 Malcolm Dwyer2 Dan Linzmeier2

Computer Engineering and Communications
Department1

University of Thessaly, Volos,
Greece

nbellas@uth.gr

Motorola, Inc.2
Schaumburg, IL

USA
sek.chai@motorola.com

2009 17th IEEE Symposium on Field Programmable Custom Computing Machines

978-0-7695-3716-0/09 $25.00 © 2009 IEEE

DOI 10.1109/FCCM.2009.16

149

By formulating the problem in the streaming domain we
produce a design which more than 4x times faster than a high
performance multi-core processor in how it utilizes its hardware
resources measured in speedup per unit of clock frequency
(section IV.D).

The main contribution of this paper lies on introducing a
complex image processing application, explaining the source
level optimizations on the original code to exploit the distributed
memory architecture of modern FPGAs, and, finally, applying a
design automation method to implement multiple versions of the
module before the system architect selects the most appropriate
implementation. One of the primary goals of the project was to
show that a high level abstraction in the problem description can
drastically reduce the development time of a highly complex,
industrial-level system, without necessarily resulting to sub-
optimal performance or area.

II. FISHEYE LENS DISTORTION CORRECTION ALGORITHM
The stereoscopic geometry of wide-angle photography does

not comply with the conventional central perspective projection
of Figure 2a. The central perspective model is based on the
premise that the incidence angle of an incoming ray from an
object point is equal to the angle between the ray and the optical
axis2. According to this model, object points with incidence
angle close to 90o would be projected to a point at infinite
distance from the principle point3, thus limiting the field of view
to angles close to the optical axis. To enable a larger field of

2 The imaginary vertical line that passes through the center of curvature in

Fig. 2.
3 The point which the optical axis intersects the projection surface

view, a different projection model is necessary.
The fisheye projection is based on the principle that the

incidence angle of the ray is linearly proportional to the
distance of the projection point to the principle point.
According to this equation, the incoming object rays are
refracted towards the optical axis, so that even an incidence
angle of 90o can be projected onto a finite distance from the

principle point: °
=

90
a

R
r

, where 22 yxr += is the distance
between the projection point and the optical axis, α is the
angle of incidence, R is the image radius, and x, y are the
fisheye image coordinates. To reconstruct the projection of an
object point into the 3D camera space, the object and image
coordinates have to refer to the same coordinate system. After
some algebraic transformations [22], the resultant equations
that describe the projection on the image plane when using
fisheye lens are given by:

hx xd

Xc
Yc

Zc
YcXc

aR

x ++

+⎟
⎠
⎞

⎜
⎝
⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +

=

1

)()(
tan2

2

22

π

 (1)

hy yd

Yc
Xc

Zc
YcXc

aR

y ++

+⎟
⎠
⎞

⎜
⎝
⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +

=

1

)()(
tan2

2

22

π

where Xc,Yc,Zc are object point coordinates on the 3D camera
coordinate system, dx,dy are lens-distortion parameters, and
xh,yh are the coordinates of the principle point.

Equation (1) provides the method to convert the
perspective space coordinates (Xc,Yc,Zc) of an object back to
the 2D distorted fisheye space (inverse mapping). First, the
2D central perspective image coordinates i, j are converted to
the 3D space:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
×

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1333231
232221
131211

j
i

rrr
rrr
rrr

Zc
Yc
Xc

Equation (1) can be broken into elementary mathematical

functions and the lens-distortion parameters can be folded
into the following equations.

Equation (4) models lens distortion based on the sensor

parameters k[]. Given the (Xc, Yc, Zc) coordinates of a each
point, we compute the corresponding coordinates of this point

Figure 1. Fisheye lens distortion correction example for two
windows of horizontal FoV=60o and FoV=8o The lenses cover a
horizontal FoV=120o

Figure 2. Projection model of fisheye lens

22 YcXcd += (1)

Zc
dDu = (2)

)tan(DuaRu = (3)

)5(*)4(*)3(*)2(*)1(234 kRukRukRukRukP ++++= (4)

hh yYc
d
PyxXc

d
Px +=+= *,*

(5)

150

at the 2D fisheye space. Note that (5) produce a fractional
pair of coordinates at the fisheye plane, and the pixel value at
that point has to be interpolated based on the values of the
pixels at neighboring integer positions.

Bicubic interpolation is a robust, yet computationally
expensive technique used to approximate intermediate points
of a continuous event given the interpolation nodes, or
sample points [16]. Although other techniques such as nearest
neighbor or bilinear are simpler and more widely used in
hardware implementations, the high PSNR4 requirements of
the fisheye correction module makes this the method of
choice.

The inverse mapping and two-dimensional bicubic
interpolation flows are shown in Figure 3. The bicubic
interpolation method uses cubic sampled functions to
approximate an intermediate value based on the fundamental
property that the sample function f is equal to the interpolation
function g in the sample points.

The following equation approximates the value of a function f
at point x, based on known sampled point values)(ii xfC = :

2)()(
2)43()(

2)253()(
2)2()(

)(*)(*)(*)(*)(

23
4

23
3

23
2

23
1

44332211

sssU
ssssU

sssU
ssssU

sUCsUCsUCsUCxg

−=

++−=

+−=
−+−=

+++=

where the point x is such that: 4321 xxxxx ≤≤≤≤ and
2xxs −= .

The two-dimensional bicubic interpolation method shown in
Figure 3 is accomplished by one-dimensional interpolation in
each coordinate. The method requires the use of the 16 pixel
values of a 4x4 window around the interpolated point.

The interpolation function G at point (x,y) is given by:

4 Peak Signal to Noise Ratio is frequently used to measure signal

quality in images

2)()(
2)43()(

2)253()(
2)2()(

)(*)()(*)()(*)()(*)()(

23
4

23
3

23
2

23
1

44332211,

tttV
ttttV

tttV
ttttV

tVxgtVxgtVxgtVxgyxG

−=

++−=
+−=
−+−=

+++=

where ⎣ ⎦xxt −= , and 4,3,2,1),(=kxgk is the row-wise

interpolation for the rows at ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 2,1,,1 ++− yyyy
In order to eliminate high frequency artifact noise on the

image, we apply a 5-tap vertical and a 5-tap horizontal low pass
filter on the corrected image as the final step of the algorithm to
downscale to a VGA (640x480) output resolution.

We have developed an optimized software version of the
algorithm in C running on a Core 2 Quad desktop processor with
2GB of RAM for baseline comparison and statistics gathering.
The bicubic interpolation was responsible for 75% of the
execution time, the inverse mapping for 3.6%, and the low pass
filter for 21.4%. The low contribution of the inverse mapping is
due to the efficient FP units of the x86 architecture; the FPGA
implementation has to expend a high amount of gates and cycles
to implement this module for real-time operation. As we will
examine later in section IV.D, real time correction with
acceptable video quality is beyond the reach of today’s high
performance multi-core processors.

III. ARCHITECTURAL APPROACH

A. Need for architectural optimizations
To achieve real-time, high-quality fisheye lens distortion

correction, a very large amount of pixel data has to be streamed
from an image sensor to the accelerator, be processed, and
transferred back to the DRAM memory before transmitted to the
end user. The main observation from the algorithmic analysis of
section II is that the pixel coordinates at the fisheye space that
have to be retrieved at each step follow a complicated non-linear
pattern that, although static (not dependent on pixel values), is
difficult to be pre-computed.

Figure 3 shows the mapping of pixel coordinates from the
perspective to the fisheye space. The resulting non-linear trace of
fractional coordinates determines a square 4x4 neighborhood of
pixels, which are needed to approximate the pixel value at each
fractional sub-pixel point. The exact trace shape depends on a
variety of factors, such as the field of view of the ROI, the exact
location of the pixel in the fisheye space, and also on a set of
parameters modeling lens distortion. Although the trace is not
data dependent, and thus, can be theoretically pre-computed
ahead of the interpolation, a complex pre-load unit would be
needed to prefetch the pixels for the bicubic interpolation and
low pass filtering.

A general purpose caching mechanism in lieu of an exact
streaming interface is not efficient in a lot of cases. Using the
software version of the algorithm we can assess the efficiency of
a caching mechanism. Less than 1% of successive fractional
points fall within the same 4x4 neighborhood (e.g. like the two
pixels in the middle of the trace in Figure 3), for a large field of
view (FoV) equal to 60o, when the pixels are near the optical
center of the image. This percentage grows up to 30% when the
pixels are close to the edge of the frame for the 60o FoV, and to
80% for a much smaller FoV of 10o. Therefore, besides lack of

Figure 3. Inverse Mapping is used to convert the coordinates
from the perspective space back to the fisheye space. A 4x4
pixel neighborhood around the mapped pixels is used to
perform bicubic interpolation and compute the pixel values at
the fractional points.

151

temporal locality, this algorithm implementation suffers from
lack of spatial locality when the field of view is large (and a
large FoV is the reason that fisheye lens are used, in the first
place).

B. Arithmetic Operations and Numerical Accuracy
Inverse mapping uses the inverse tangent operation, divisions,

and square root, which are expensive in hardware resources.
Popular methods to approximate such elementary mathematical
functions in hardware are the CORDIC algorithm [2] and the
Bipartite Tables (BT) [12]. The BT method decomposes a
function into a sum of two functions with a smaller input size,
and requires two smaller look-up tables (LUTs) rather than a
larger one. It has been reported in [20] that the BT method offers
a compression factor of one to two orders of magnitude
compared to a straightforward LUT implementation. We settled
on the Bipartite Tables because we can make use of the on-chip
memories of the FPGAs, without expending a lot of logic slices.

The fractional part of input x is partitioned in three non-
overlapping fields (Figure 4) and the function is approximated
as:

),x(xa),x(xa)xx f(x f(x) 201100210 +≈++=
The two tables provide the coefficients a0 and a1, given the

smaller inputs (x0,x1) and (x0,x2), respectively[12].
 The only constraint is that the input x to function f(x) be

normalized to within the [1,2] range before the tables are
accessed. This is done by detecting the number of leading zeros
of the input x, and then, shifting left or right the input x by that
amount. The output f(x’)= f1(x’)+f2(x’) is corrected back to
produce the elementary function f(x). All calculations are done in
the streaming accelerator using fixed-point arithmetic hardware.

The numerical accuracy of the inverse mapping function is
important for high-quality image processing. The bicubic
interpolation algorithm creates severe spatial distortions if the
granularity of the sub-pixel fractional coordinates is not fine
enough. In our implementation, we use 25 bits for the fixed-point
representation of each one of the two coordinates, 12 of which
are used for the fractional part.

We use two tables for each one of the atan(x), x , 1/x
mathematical functions as follows: a 256x16 and a 512x7 table
for 1/x, a 256x17 and a 256x7 table for x , and a 256x17 and a
256x7 table for atan(x). We use 15-bits fractional accuracy for
the output of each of the tables.

C. Tiling and Pipelining
A key observation is that the algorithm has a large degree of

data reuse but not necessarily across a row or column of the
frame. For instance, in case of the row-wise inverse mapping
(Figure 3), some fisheye space pixels that have already been

 fetched to interpolate the perspective space pixels at row y can
be used again for the next row y+1. Reuse is maximized by
applying two-dimensional tiling in each frame, a technique used
by optimizing compilers to improve cache hit rate. We partition
the output frame in blocks of equal size, and we seek to produce
all the pixels of one block before we start producing the pixels of
the next block.

Figure 5 shows a block of output pixel data taken from the
frame in Figure 1, and the corresponding rectangular bounding
block of pixels at the distorted fisheye space needed to
interpolate the output pixels. Adjacent rectangular boxes in the
fisheye space will partially overlap due to the curvature of the
distorted boxes (shown in red in Figure 5). The partial overlap
implies that pixels close to the edges of the bounding box are
being fetched from the memory more than once.

By re-arranging the order of the computations to exploit reuse
at the block level, we also allow distributing the data in low-
latency on-chip memories, which are readily available in modern
FPGAs. The advantages of tiling are as follows:
• All pixel data are kept within a very small and constant

latency from the computational units, instead of in off-chip
DRAMs.

• We exploit the high bandwidth capabilities of on-chip
SRAMs, which is necessary to achieve high frame rate, and
high image quality, and

• We can trade-off control and communication overhead
between the accelerator and the scalar processor with FPGA
memory capacity. Larger, more costly FPGAs with more
on-chip memory can hold larger, and fewer tiles, and
increase the accelerator dataset.

Additional optimizations can be applied if we pipeline the
fisheye transformations, and allow multiple tiles to reside in the
computational pipeline at any moment. Pipelining increases the
effective computational bandwidth, and better utilizes the high
bandwidth of on-chip SRAMs. In our scheme, each pipeline
stage is dedicated to a single transformation so that successive
tiles are processed simultaneously. For example, while all pixels
of tile N are being processed in the bicubic interpolation stage,
the tile N+1 is in the inverse mapping stage. We call this
optimization macro-pipelining because it typically takes
thousands of cycles for each stage to finish its task, and the size
of each tile is thousands of pixels.

The accelerator architecture in Figure 6 shows the pipelined
block diagram of the streaming accelerator for real-time fisheye
lens distortion correction. The pipeline is partitioned in four
stages:

n
x0 x1 x2

n0 n1 n2

Figure 4. The partition of the input x in three fields in the BT
method

(a) Input tile (b) Output tile
Figure 5. Tiling allows each block of pixels to be
corrected before the correction of the next block.

152

1. A DMA (prefetch) stage accesses the main memory and
stores the next tile of pixel data5 to on-chip SRAMs (tile N).
Multiple SRAMs are used to increase the bandwidth from
the main memory, and to the next pipeline stage. Figure 3
indicates that one of the performance bottlenecks of the
system is due to the need to read 16 pixels6 from the fisheye
space to interpolate the value of a single pixel at a sub-pixel
location. The availability of dual-ported SRAMs in modern
FPGAs also helps to increase the bandwidth.
At the same pipeline stage, inverse mapping transforms
coordinates of tile N from the perspective to the fisheye
space using the bipartite table method as explained
previously. The fractional sub-pixel coordinates are stored
in on-chip SRAMs to be used in the next stage.

2. At the same time, the bicubic interpolation unit retrieves
each coordinate pair (x,y) of tile N-1, and uses these
coordinates as address pointers to read the 4x4 pixel area
from the input buffers. For each pair (x,y), we first compute
the coordinates (⎣ ⎦ ⎣ ⎦yx ,) of the closest integer pixel at the
top left direction of the sub-pixel, and we then use these
coordinates as the basis to retrieve the remaining pixels in
the 4x4 vicinity. For instance, all the integer pixels within
the four colored bounding boxes of Figure 3 are retrieved,
32 bytes at a time, in order to compute the pixel values at
locations (x-2, y), (x-1, y), (x, y), and (x+1, y) of the
perspective space. These values are, in turn, stored in the
next pipeline buffers.

3. The next two stages are used to perform a 2D convolution-
based low pass filter both vertically and horizontally on tiles
N-2 and N-3, respectively. The filtering is necessary to
reduce the high-frequency noise artifacts particularly needed
when the requested field of view is small. The final stage
also streams the data out to the main memory.

To be able to operate all stages simultaneously, we make use
of dual buffering schemes in each stage. We use the dual-port
capability of the FPGA on-chip memories exclusively within the
same pipeline stage to increase bandwidth, and we use two such
memories to interleave reads and writes at successive stages.

Referring to Figure 6, at any point during computation, the
inverse mapping stage writes coordinates to SRAM A of dual
buffer named Coordinates, and the bicubic interpolation stage
reads the coordinates of the previous tile from SRAM B. In the
next accelerator invocation for the next tile, the roles of SRAMs
A and B are reversed. The eight buffers between the DMA and

5 Pixel data are in YCbCr 422 format
6 Or 32 bytes: 16 Y bytes, and 16 CbCr bytes

the bicubic interpolation stage are all dual-ported and double
buffered and provide a collective bandwidth of 16 bytes/cycle
for read and 16 bytes/cycle for write. Our Proteus tool is
parameterized to instantiate any combination of single or dual-
ported SRAM, in a single or dual-buffered configuration.

Finally, special attention is needed for the first and the last few
invocations of the accelerator in every frame when the macro-
pipeline is filled and when it is drained. We make use of the
valid bit mechanism [4][8] to force parts of the macro-pipeline to
inactivity. For example, the reads out of the pixel buffers
between the DMA and the BI are set to invalid in the first
invocation of the accelerator for each frame, because they have
not been filled yet with pixel data. Likewise, the two input
streams are de-activated (by setting their stream descriptor size
to 0), at the last three invocations of the accelerator in order to
drain the macro-pipeline. The scalar processor is responsible for
managing the setting of valid bits for the buffers, and the I/O
stream units.

IV. FPGA IMPLEMENTATION
The fisheye lens distortion correction module is part of an

FPGA-based SoC which uses a fisheye lens camera. The SoC
has been implemented in a Virtex-4 LX-80 FPGA and also
contains a real-time tracking mechanism to detect a remote-
control device used to set the pan, tilt, and zoom parameters in
the frame. It includes a Microblaze microprocessor, an image
sensor interface, a multi-ported memory controller, and a number
of I/O peripherals. The real-time video
compression/decompression takes place outside the FPGA part.
The FPGA system operates at 62.5 MHz, and produces 22 VGA
frames/sec given a megapixel input fisheye image.

A. Architectural automation
We use Proteus, our streaming accelerator generation tool to

quickly perform architectural exploration and hardware
generation [4][5]. Proteus generates accelerators that use the
memory-to-memory stream-oriented approach to vector
processing. The architecture decouples and overlaps data
accesses and computations and removes the requirements from
programmers to explicitly schedule memory accesses [8]. This
approach has several independent load/store units (called stream
interface units, SMIFs) used to prefetch data from wide, slow
memories and turn it into narrow, high-speed streams of vector
elements. A natural consequence is that vector alignment and
size become irrelevant.

The Proteus tool allows us to quickly explore different
architectural scenarios and evaluate the quality of the design in
terms of computational bandwidth, clock frequency and size. By
varying system constraints such as the number and size of
available functional units (multipliers, ALUs, on-chip SRAMs,
etc.), the average bandwidth and latency to the main memory
and so on, we obtain a large set for different implementations in
a few minutes.

The application code for the fisheye lens distortion correction
is very compact, and has size of around 800 lines. The code is
explicitly operating on tiled data, i.e. the tiling and pipelining
source level transformations are applied manually to the
functional C code, and not through an optimizing compiler. The
Proteus tool has been extended to provide facilities for random,

and data-dependent memory accesses for on-chip memories.

Figure 6. Block diagram of the lens distortion correction pipeline.

153

These extensions do not break one of the characteristics of the
streaming computing, namely the decoupling between data
fetching and computations. This is because they are only limited
to local, constant latency, on-chip memories, and not to accesses
to external memories or peripherals. The logic and the related
on-chip memory are part of the data path, and the related load
and store instruction only support the access of a single item at a
time.

Of particular interest is the mechanism to start and terminate
the accelerator. The user triggers the accelerator by writing to a
memory-mapped “Start” register, and the accelerator starts
reading the input streams and writing the output streams
according to the stream specifications. These specifications, such
as the starting address, shape and size are also set before the
accelerator is invoked by the user.

Each of the pipeline stages of Figure 6 can start and finish
independently to each other. This not only useful, but also
critical in this design because the back-end stages should not be
enabled before the pipeline is filled, and the front-end stages
should not be enabled when the pipeline is flushing.

Mechanisms that cause an execution thread running on the
accelerator or on a stage of the accelerator to terminate include:
• reading all the stream elements of an input stream,
• writing all the stream elements of an output stream to the

memory, and receiving an ACK signal from the system bus
when the last bus write transaction terminates ,

• performing all the required writes to the on-chip SRAMs
• finishing all the accumulator iterations required in the DFG.
When a termination mechanism is activated, an interrupt is
generated to an accelerator interrupt controller. The controller
combines all the relative interrupts from the various sources to
generate an accelerator interrupt to the processor interrupt
controller. For instance, the accelerator of Figure 6 has sixteen
interrupt sources: two from the input stream units, one from the
output stream unit, and thirteen for the writes to the on-chip
SRAMs.

The Proteus toolset generates automatically all the necessary
interrupt circuitry based on the structure of the DFG. It also
generates all the appropriate registers in the accelerator memory
map needed to monitor and control the accelerator through the
Microblaze processor.

The tool provided a very fast path to architectural exploration
and final implementation. For the final implementation, we
started with a streaming DFG description of the application of
around 800 lines of code, and we generated approximately
100,000 lines of code of synthesizable Verilog. Moreover,
Proteus generates the testbench to drive and monitor the Verilog
code. The testbench includes facilities to initialize internal
registers of the hardware accelerator, to drive the input streams,
and to monitor and verify the correctness of the output streams.
For more information on the Proteus tool the reader may refer to
[4][5][8]. Readers are referred to [1][6][10] more information on
the streaming programming model.

B. Hardware details
The size of available on-chip SRAM memory in the FPGA

device determines the tile size in the fisheye lens distortion
correction algorithm. The LX-80 part has 200, 18 Kbit dual-
ported on-chip SRAMs, and each one can be configured in any
“aspect ratio” from 16Kx1 to 512x36 [24]. If the output tile is

Nx8 bits, then the buffer between IM and BI is Nx507, the
buffers between BI and LPF vertical will be Nx8 and Nx16, and
the buffers between LPF vertical and LPF horizontal will be
(N/2)x8 and (N/2)x16. The output data are down-sampled
horizontally and vertically by two and the last two buffers store
the pixels after vertical down-sampling only.

Moreover, we use 8x2=16 buffers at the input to store 422
pixels and to increase the number of available read ports at the
BI stage. Four of the eight dual-buffers store Y pixel data, and
four store Cb/Cr data. The exact number of pixels stored in these
buffers is dependent on FoV settings and the location of the
block within the frame. We need to make sure that the buffers
are large enough to store the pixels for the largest FoV allowed
in the system, and for all block locations within the input image.
As Table 1 indicates, the buffer size N for the application was
6864 pixels, which corresponds to a 128x48 tile size. Four
additional rows and four additional columns which were added
to accommodate the boundary conditions of the 3-tap low pass
filter, increased the tile size to 132x52. The output stream is
(128/2 x 48/2) = 1536 pixels (or 3072 bytes) per tile, and the
VGA output is partitioned in (640*480)/1536 = 200 tiles (20 tile
rows, 10 tile columns). The total processing time per frame
amounts to 203 blocks, due to the need to fill and flush the
accelerator pipeline at the beginning and end of each frame.

To be able to sustain an acceptable frame rate without
temporal artifacts, the module should process at least 15
VGA frames/sec at 62.5 MHz. Based on the above
constraints, the accelerator should spend no more than 328us
(20526 cycles) for each block processing a 6864-pixel tile. In
order to achieve this performance, the accelerator is
scheduled according to modulo scheduling with an iteration
interval of two cycles.

We measured our performance on the Virtex-4, LX-80
FPGA board at 224us (13995 cycles) per 6864-pixel tile,
which accounts for 22 fps frame rate. This measurement
includes both the time for the accelerator to process the tile
and for the Microblaze to set up the accelerator for tile
processing. Up to about 400 instructions are executed in
parallel in every clock cycle at the steady state portion of the
modulo schedule of the streaming accelerator.

A high performance, priority-based, multi-port, memory
controller serves the two I/O ports of the accelerator and
additional peripherals with real time requirements such as the
image sensor interface. A high-speed dedicated PLB bus drives
the I/O streaming data from and towards the multi-ported
memory controller. In our design, a PLB write burst length of 16
is used to transfer one 128-byte row of the output tile8. The read
accesses, which dominate the accelerator bandwidth, are also
burst, but the burst size is variable depending on the size of the
row of each input tile. Typically, 2-3 bursts of size 16 are needed
to read an input. Each write burst transaction requires 20 cycles
(4 cycles overhead), and each read burst transaction requires 33
cycles (17 cycles overhead). Using bursting to access data from
the DRAM is critical to meeting the real time requirements of
the application, and to reduce memory latency.

An arbitration module regulates the access of the I/O
streaming units to the dedicated PLB bus that connects the

7 Each entry stores 2, 25-bit fractional coordinates
8 Note that the PLB bus size is 8 bytes and each output tile is 64x24 pixels

154

accelerator to one of the ports of the memory controller. The
arbitration unit uses round-robin and is also generated
automatically by the Proteus tool to match the characteristics of
the streams.

The dataset of each accelerator invocation is a tile of pixels
and the accelerator is called 203 times for every frame. Table 2
shows the sequence of events between the scalar processor and
the Proteus accelerator. The scalar processor sets up the
accelerator for the next tile in the frame by modifying the stream
descriptors (e.g. starting address of the input and of the output
stream, span, skip of the input stream, etc.), and triggers the start
by setting a memory-mapped register in the accelerator. At the
end of the tile processing, the accelerator generates an interrupt
back to the processor.

C. Hardware-Software interaction
A new setting of the region of interest (ROI) or the FoV

(zoom factor) disrupts this execution flow. The scalar processor
first reads the coordinates of the ROI center point (ucp, vcp) from
the tracker and transforms them in the perspective space using

forward mapping. The forward mapping operation is only carried
out for a single point when the ROI settings change, and is
therefore out of the critical path.

The accelerator then proceeds to use the scalar version of the
inverse mapping algorithm to compute the fisheye space
coordinates of the top-left pixel TL for each of the 200 tiles of
the frame. This is necessary because these addresses will be fed
to the accelerator to be used as a starting address for the input
streams. This part of the code is also used to determine the
bounding boxes, and therefore, the skip and span settings of the
input pixel stream. For example, the width of the bounding box
BBi is given by:

⎡ ⎤ dw),U(U),U(UW i) TL(TL(i)i) TL()TL(iBBi += +−+++ 101101 minmax
where UTL(i) is the column coordinate of the top left pixel of the
BBi at the fisheye space.

A. Performance evaluation

Using the bit-exact, software version of the fisheye lens
distortion correction algorithm, we compared the performance of
the hardware accelerator to the performance of the Intel Core 2
Quad multi-core processor. In order to make a fair comparison,
we optimized the code to exploit the quad-threaded, SIMD
architecture of Core 2 Quad by using the OpenMP library and by
manually rewriting the inner loops of the IM, BI and LPF kernels
using the SSE ISA extensions. We used Intel’s icc compiler with
the O3 optimization flag to enable aggressive optimizations.
Moreover, we make full utilization of the processor’s FP units
for the computation of the fractional coordinates.

Table 3 shows the execution time of the software
implementation running on the 2.5 GHz Core 2 Quad processor
and our FPGA hardware running on the Virtex-4 LX-80, 62.5
MHz FPGA. The fully optimized Core 2 Quad version cannot
meet real-time requirements at only 5.26 fps processing rate and
is very inefficient in handling such streaming workload.

Table 3 also shows that the FPGA solution is 167.2 times more
efficient in utilizing its hardware resources than the high
performance processor, and 668.8 times more efficient per each
thread running on a single core. These numbers are a testament
of the superiority of reconfigurable over general purpose
computing for application specific platforms.

V. RELATED WORK
Algorithms for fisheye lens distortion correction have been

proposed for over two decades [11]. Most implementations that
we know of are based on software running on a desktop
processor, but there are embedded systems for fisheye lens
distortion correction using FPGAs[14].

There has been an intense interest in the research community
in the last decade to automate the architectural process for ASIC
of FPGA tool flows starting from a high level representation like
C, Java, Matlab, DFGs etc. [9].

Relevant projects and commercial tools include the OCAPI
tool from IMEC [21], the DEFACTO compiler from USC [28],
the ASC streaming compiler effort from the Imperial College
[18], and the CASH compiler from CMU that maps a C
application onto asynchronous circuits [25]. The Impulse-C [19]
and Handel-C [7] languages are efforts to utilize C with
extensions as a high level RTL language for FPGA design. At an
even higher level of abstraction, AccelChip [3] is

Table 1. Percentage resource utilization and BRAM sizes for
the Virtex-4 LX-80 FPGA

Logic Slices 11082 (30%)
DSP48 units 71 (88%)
BRAMs 109 (54.5%)

BRAM types
(Number per type)

4096 x 8 (16)
13728 x 50 (1)
6864 x 8 (2)
6864 x 16 (2)
3432 x 8 (2)
3432 x 16 (2)
Bipartite Tables (see 1))

Table 2. Control and Monitor code running on the Microblaze
processor.

Power Up Sequence : Load the Bipartite Tables
while (1) {
 Read the center point (CP) coordinates of the fisheye ROI from
 the tracking module and call forward_mapping() to compute
 the rotation matrix (rij);
 Call inverse_mapping() to compute the fisheye space
 coordinates of the top left pixels (u0,0, v0,0) for each of the 200
 blocks of the perspective space;
 Compute the sizes and locations of the bounding boxes for the
 input tiles;
 /* Main loop for each frame */
 while (values for Pan, Tilt, Zoom remain unchanged) {
 tile = 0;
 for (i = 0; i < 203; i++) {
 Set up stream descriptors and accelerator for tile;
 Trigger accelerator;
 Wait for interrupt from accelerator;
 if (tile < 200) tile++;
 }
 /* End of frame checks */
 Check for new values for Pan, Tilt, or Zoom;
 }
 }

155

commercializing a compiler to automatically generate gates from
Matlab code. The PICO project [15] incorporated a lot of
concepts from earlier work on VLIW machines, and described a
methodology to generate a VLIW engine along with an
accelerator optimized for a particular application. The C2H tool
from Altera Corporation and the Catapult-C from Mentor
Graphics use an ANSI-C to gates methodology to automate
architectural synthesis.

VI. CONCLUSIONS
In this paper, we have presented a pipelined architecture in a

reconfigurable platform for a fisheye lens distortion correction
algorithm. We follow a methodology that includes coding a
given functional code with source-level optimizations in a
streaming language. This is done so that our ESL tool, Proteus,
can efficiently map the streaming application into hardware
accelerators. Design issues such as memory bandwidth are
alleviated by tiling and pre-fetching image data from memory.

Using a design automation tool, we were able to quickly scan
the space of Pareto-optimal implementations for a variety of
area, throughput and clock frequency settings, and meet the
system frame rate requirements.

The most interesting future direction is to investigate the
automation of such source level optimizations with a minimal
user feedback. Although there have been considerable academic
research in this subject, and some commercial tools have
appeared in the market, no solution for an efficient software-
oriented, C-to-gates compiler has become mainstream.

REFERENCES
[1] Amarasinghe S., Thies B. Architectures, Languages and Compilers for

the Streaming Domain. Tutorial at the 12th Annual International
Conference on Parallel Architectures and Compilation Technique
(PACT), New Orleans, LA

[2] Ray Andraka. A survey of CORDIC algorithms for FPGA based
computers. International Symposium on FPGA, February 1998,
Monterrey, CA

[3] Banerjee P. et. al. A MATLAB compiler for distributed, heterogeneous,
reconfigurable computing systems. Proceedings of the IEEE
Symposium on Field Custom Computing Machines (FCCM), April 17-
19, 2000, pp. 39-48, Napa Valley, CA

[4] Nikolaos Bellas, Sek Chai, Malcolm Dwyer, Dan Linzmeier. Template-
based generation of streaming accelerators from a high level
representation. International Symposium on Field-Programmable
Custom Computing Machines (FCCM), April 24-26, 2006, Napa
Valley, CA

[5] Nikolaos Bellas, Sek Chai, Malcolm Dwyer, Dan Linzmeier. FPGA
implementation of a license plate recognition SoC using automatically
generated streaming accelerators. 13th Reconfigurable Architectures
Workshop (RAW), 25-26 April 2006, Rhodes, Greece

[6] E. Caspi, et. al.. Stream Computations Organized for Reconfigurable
Execution (SCORE). Proceedings of the International Conference of
Field Programmable Logic (FPL), pp. 605-614, August 2000

[7] Celoxica Corporation, Handel-C language reference manual,
www.celoxica.com

[8] Compton K., Hauck S.. Reconfigurable Computing: A Survey of
Systems and Software. ACM Computing Surveys, vol. 34, No. 2, June
2002, pp. 171-210

[9] W.J. Dally, et. al.. Merrimac: Supercomputing with streams.
Proceedings of the SuperComputing SC’03 Conference, pp. 35-43,
November 2003, Phoenix, AZ

[10] N. Greene. Environment Mapping and Other Applications of World
Projections. IEEE Computer Graphics and Applications. Nov 1986, vol.
6, no. 11, pp. 21-29.

[11] Hannes Hassler, Naofumi Takagi. Function Evaluation by Table Look-
Up and Addition. Proceedings of the 12th Symposium on Computer
Arithmetic, pp. 10-16, July 1995, Bath, UK

[12] N. D. Jankovic, M. D. Naish. Developing a Modular Active Spherical
Vision System. Proceedings of the 2005 IEEE International Conference
on Robotics and Automation, Barcelona, Spain, April 18-22, 2005

[13] J. Jiang, et. al, "Distortion correction for a wide-angle lens based on
real-time digital image processing", Optical_Engineering, July 2003,
Vol 42, No. 7, pp 2029-2039

[14] V. Kathail, S. Aditya, R. Schreiber, et. al., “PICO: automatically
designing custom computers”, Computer, vol. 35, no 9, Sept. 2002, pp.
39 – 47.

[15] Robert Keyes. Cubic Convolution Interpolation for Digital Image
Processing. IEEE Transactions on Acoustics, Speech ,and Signal
Processing. Vol. ASSP-29, No. 6, December 1981.

[16] Miriam Leeser, Shawn Miller, Haiqian Yu. Smart Camera Based on
Reconfigurable Hardware enables Diverse Real-Time Applications.
Proceedings of the 12th IEEE Symposium on Field Custom Computing
Machines (FCCM), April 2004, Napa Valley, CA

[17] Mencer O., Pierce D. J., Howes L.W., Luk W. Design Space
Exploration with a Stream Compiler. Proceedings of the IEEE
International Conference on Field Programmable Technology (FPT),
December 2003, Tokyo, Japan

[18] Pellerin D., Thibault S. Practical FPGA Programming in C. Prentice
Hall, 2005

[19] Michael Schulte, James Stine. Symmetric Bipartite Tables for Accurate
Function Approximation. Proceedings of the 13th Symposium on
Computer Arithmetic, pp. 175-183, 1997, Los Alamitos, CA

[20] Schaumont P., Vernalde S., Rijnders L., Engels M., Bolsen I. A
programming environment for the design of complex high speed
ASICs. Proceedings of the 35th Design Automation Conference
(DAC), June 1998, pp. 315-320, San Francisco, CA

[21] E. Schwalbe, “Geometric Modeling and Calibration of FishEye Lens
Camera Systems,” Proceedings of the ISPRS Working Group,
Panoramic Photogrammetry Workshop, Berlin, Germany, Feb 2005,
ISBN 1682-1750, vol 34-5/W8

[22] Wang, Ming-Liang, et. al. An Intelligent Surveillance System Based on
an Omnidirectional Vision Sensor, IEEE Conference on Cybernetics
and Intelligent Systems, June 2006, pp. 1-6.

[23] Virtex-4 Handbook, www.xilinx.com, August 2004
[24] Budiu M., Venkataramani , Chelcea T., Goldstein S.C. Spatial

Computation. Proceedings of the 11th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), October 9-13, 2004, pp. 14- 26, Boston, MA

[25] Vidiu M., Venkataramani , Chelcea T., Goldstein S.C. Spatial
Computation. Proceedings of the 11th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), October 9-13, 2004, pp. 14- 26, Boston, MA

[26] Tsuyoshi Yamamoto, Munehiro Doi. Design and Implementation of
Panoramic Movie System by Using Commodity 3D Graphics
Hardware. Computer Graphics International (CGI) p. 14-19, July 2003,
Tokyo, Japan

[27] H. Ziegler H., Hall M. Evaluating Heuristics in Automatically Mapping
Multi-Loop Applications to FPGA Proceedings of the 13th
International Symposium on FPGAs, February 2005, pp. 184-195,
Monterey, CA

[28] S. Zimmermann, D. Kuban. A video pan/tilt/magnify/rotate system
with no moving parts. IEEE Digital Avionics Systems Conference, Oct.
1992, pp.523 – 531.

[29] News Release, www.4i2i.com, April 2005

A patent is pending that claims aspects of items and methods described in
this paper.

Table 3. Performance comparison between the Core 2 Quad
and the FPGA implementation

Implement. Frame
rate
(fps)

Speedup
over SW

Speed
Up per
Hz

Speed Up
per Hz per
thread

Software 5.26 1 1 1
Hardware
(FPGA)

22 4.18 167.2 668.8

156

