
 

Abstract— Fisheye lenses are often used in scientific or 
virtual reality applications to enlarge the field of view of a 
conventional camera. Fisheye lens distortion correction is an 
image processing application which transforms the distorted 
fisheye images back to the natural-looking perspective space. 
This application is characterized by non-linear streaming 
memory access patterns that make main memory bandwidth 
a key performance limiter.  

We have developed a fisheye lens distortion correction 
system on a custom board that includes a Xilinx Virtex-4 
FPGA. We express the application in a high level streaming 
language, and we utilize Proteus, an architectural synthesis 
tool (described in [4][5]), to quickly explore the design space 
and generate the streaming accelerator best suited for our 
cost and performance constraints. This paper shows that 
appropriate ESL tools enable rapid prototyping and design 
of real-life, performance critical and cost sensitive systems 
with complex memory access patterns and hardware-
software interaction mechanisms.  

I. INTRODUCTION 
Recent advances in reconfigurable technology have expanded 

the application domains for which a reconfigurable system offers 
the best performance versus cost ratio. The new paradigm of 
spatial computation enables the design and deployment of 
FPGA-based SoCs with complex hardware and software 
components [26]. In particular, modern FPGAs are used in 
“smart camera” systems to accelerate real-time, H.264/AVC 
video encoding [30], high image quality medical visualization 
[17], or image analysis and pattern recognition [5].  

Fisheye lenses allow imaging a large sector of the surrounding 
space instantaneously. While ordinary rectilinear lenses map 
incoming light rays to a planar photosensitive surface, fisheye 
lenses map them to a spherical surface, which is capable for a 
much wider field of view (FoV). It is possible, and in fact very 
common, for fisheye lens to encompass a FoV of 180o. Such 
hemispherical images have been traditionally used for 
specialized applications such as surveillance [23], robot 
navigation [13], content creation for immersive environments 
and virtual reality [27], photography [29], astronomy, etc.  

Fisheye (or, generally, wide-angle) imaging can be used in 
more mainstream applications such as consumer digital imaging 

and video capture. By capturing a larger section of the 
surrounding space, a fisheye lens camera affords a wider 
horizontal and vertical viewing angle, provided that the distorted 
images at the fisheye space can be corrected and transformed 
into the perspective space in real time (Figure 1). Real-time 
distortion correction for megapixel frame resolution is possible 
using specialized hardware or powerful desktop graphics 
processors, but beyond the reach of today’s embedded 
processors or DSPs, as we will show in section IV.D. 

In this paper, we describe the design and implementation of a 
real-time fisheye lens distortion correction module using the 
Proteus architectural synthesis tool [4][5]. The module is part of 
an FPGA-based camera system which tracks the region of 
interest (ROI) within the frame using input from the user and 
then corrects the ROI in real-time before storing or transmitting 
the data to the other end. 

We first lay out the geometric properties of the fisheye lens 
distortion correction, and we explain the algorithmic aspects of 
the computational flow in section II. The focus is on the 
challenges of mapping this application into efficient hardware, 
and, in particular, on the non-linear memory access patterns and 
the need for optimizations to increase the effective bandwidth 
between the accelerator and the main memory (section III.A). 
We make use of the on-chip memory bandwidth available in 
FPGAs by organizing the computations around tiled datasets, 
and then expressing the application in a streaming data flow 
language (section III.C). 

Using the Proteus toolset and programming methodology, we 
produce hardware accelerators that follow the streaming 
architectural paradigm [1][4][5][8]. Automation allows us to 
quickly explore different Pareto-optimal implementations that 
span the whole area versus throughput design space as described 
in section IV.A. An implementation that meets the system 
requirements as well as results on an implementation in a Virtex-
4 FPGA is described in section IV.B. 

Not all tasks in a complete system should be accelerated to 
hardware. Tasks that are control-intensive or occur infrequently 
are left in software executed in the scalar processor of the FPGA. 
The hardware-software interaction is an important component of 
this design, and more so because optimizations such as tiling 
impose extra burdens on the software-hardware communication 
overhead (section IV.C).  
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By formulating the problem in the streaming domain we 
produce a design which more than 4x times faster than a high 
performance multi-core processor in how it utilizes its hardware 
resources measured in speedup per unit of clock frequency 
(section IV.D).  

The main contribution of this paper lies on introducing a 
complex image processing application, explaining the source 
level optimizations on the original code to exploit the distributed 
memory architecture of modern FPGAs, and, finally, applying a 
design automation method to implement multiple versions of the 
module before the system architect selects the most appropriate 
implementation. One of the primary goals of the project was to 
show that a high level abstraction in the problem description can 
drastically reduce the development time of a highly complex, 
industrial-level system, without necessarily resulting to sub-
optimal performance or area.  

II. FISHEYE LENS DISTORTION CORRECTION ALGORITHM 
The stereoscopic geometry of wide-angle photography does 

not comply with the conventional central perspective projection 
of Figure 2a. The central perspective model is based on the 
premise that the incidence angle of an incoming ray from an 
object point is equal to the angle between the ray and the optical 
axis2. According to this model, object points with incidence 
angle close to 90o would be projected to a point at infinite 
distance from the principle point3, thus limiting the field of view 
to angles close to the optical axis. To enable a larger field of 

                                                           
2 The imaginary vertical line that passes through the center of curvature in 

Fig. 2.   
3 The point which the optical axis intersects the projection surface 

view, a different projection model is necessary.  
The fisheye projection is based on the principle that the 

incidence angle of the ray is linearly proportional to the 
distance of the projection point to the principle point. 
According to this equation, the incoming object rays are 
refracted towards the optical axis, so that even an incidence 
angle of 90o can be projected onto a finite distance from the 

principle point: °
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, where 22 yxr +=  is the distance 
between the projection point and the optical axis, α is the 
angle of incidence, R is the image radius, and x, y are the 
fisheye image coordinates. To reconstruct the projection of an 
object point into the 3D camera space, the object and image 
coordinates have to refer to the same coordinate system. After 
some algebraic transformations [22], the resultant equations 
that describe the projection on the image plane when using 
fisheye lens are given by:  
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where Xc,Yc,Zc are object point coordinates on the 3D camera 
coordinate system, dx,dy are lens-distortion parameters, and 
xh,yh are the coordinates of the principle point. 

Equation (1)  provides the method to convert the 
perspective space coordinates (Xc,Yc,Zc) of an object back to 
the 2D distorted fisheye space (inverse mapping). First, the 
2D central perspective image coordinates i, j are converted to 
the 3D space: 
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Equation (1) can be broken into elementary mathematical 

functions and the lens-distortion parameters can be folded 
into the following equations. 

 
Equation (4) models lens distortion based on the sensor 

parameters k[]. Given the (Xc, Yc, Zc) coordinates of a each 
point, we compute the corresponding coordinates of this point 

 
Figure 1. Fisheye lens distortion correction example for two 
windows of horizontal FoV=60o and FoV=8o The lenses cover a 
horizontal FoV=120o 

 
Figure 2. Projection model of fisheye lens 
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at the 2D fisheye space. Note that (5) produce a fractional 
pair of coordinates at the fisheye plane, and the pixel value at 
that point has to be interpolated based on the values of the 
pixels at neighboring integer positions. 

Bicubic interpolation is a robust, yet computationally 
expensive technique used to approximate intermediate points 
of a continuous event given the interpolation nodes, or 
sample points [16]. Although other techniques such as nearest 
neighbor or bilinear are simpler and more widely used in 
hardware implementations, the high PSNR4 requirements of 
the fisheye correction module makes this the method of 
choice. 

The inverse mapping and two-dimensional bicubic 
interpolation flows are shown in Figure 3. The bicubic 
interpolation method uses cubic sampled functions to 
approximate an intermediate value based on the fundamental 
property that the sample function f is equal to the interpolation 
function g in the sample points. 

The following equation approximates the value of a function f 
at point x, based on known sampled point values )( ii xfC = :  
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where the point x is such that: 4321 xxxxx ≤≤≤≤  and 
2xxs −= .  

The two-dimensional bicubic interpolation method shown in 
Figure 3 is accomplished by one-dimensional interpolation in 
each coordinate. The method requires the use of the 16 pixel 
values of a 4x4 window around the interpolated point.  

The interpolation function G at point (x,y) is given by: 

                                                           
4  Peak Signal to Noise Ratio is frequently used to measure signal 

quality in images 
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where ⎣ ⎦xxt −= , and 4,3,2,1),( =kxgk is the row-wise 

interpolation for the rows at ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 2,1,,1 ++− yyyy  
In order to eliminate high frequency artifact noise on the 

image, we apply a 5-tap vertical and a 5-tap horizontal low pass 
filter on the corrected image as the final step of the algorithm to 
downscale to a VGA (640x480) output resolution.  

We have developed an optimized software version of the 
algorithm in C running on a Core 2 Quad desktop processor with 
2GB of RAM for baseline comparison and statistics gathering. 
The bicubic interpolation was responsible for 75% of the 
execution time, the inverse mapping for 3.6%, and the low pass 
filter for 21.4%. The low contribution of the inverse mapping is 
due to the efficient FP units of the x86 architecture; the FPGA 
implementation has to expend a high amount of gates and cycles 
to implement this module for real-time operation. As we will 
examine later in section IV.D, real time correction with 
acceptable video quality is beyond the reach of today’s high 
performance multi-core processors.  

III. ARCHITECTURAL APPROACH 

A. Need for architectural optimizations 
To achieve real-time, high-quality fisheye lens distortion 

correction, a very large amount of pixel data has to be streamed 
from an image sensor to the accelerator, be processed, and 
transferred back to the DRAM memory before transmitted to the 
end user. The main observation from the algorithmic analysis of 
section II is that the pixel coordinates at the fisheye space that 
have to be retrieved at each step follow a complicated non-linear 
pattern that, although static (not dependent on pixel values), is 
difficult to be pre-computed.  

Figure 3 shows the mapping of pixel coordinates from the 
perspective to the fisheye space. The resulting non-linear trace of 
fractional coordinates determines a square 4x4 neighborhood of 
pixels, which are needed to approximate the pixel value at each 
fractional sub-pixel point. The exact trace shape depends on a 
variety of factors, such as the field of view of the ROI, the exact 
location of the pixel in the fisheye space, and also on a set of 
parameters modeling lens distortion. Although the trace is not 
data dependent, and thus, can be theoretically pre-computed 
ahead of the interpolation, a complex pre-load unit would be 
needed to prefetch the pixels for the bicubic interpolation and 
low pass filtering.  

A general purpose caching mechanism in lieu of an exact 
streaming interface is not efficient in a lot of cases. Using the 
software version of the algorithm we can assess the efficiency of 
a caching mechanism. Less than 1% of successive fractional 
points fall within the same 4x4 neighborhood (e.g. like the two 
pixels in the middle of the trace in Figure 3), for a large field of 
view (FoV) equal to 60o, when the pixels are near the optical 
center of the image. This percentage grows up to 30% when the 
pixels are close to the edge of the frame for the 60o FoV, and to 
80% for a much smaller FoV of 10o. Therefore, besides lack of 

 
Figure 3. Inverse Mapping is used to convert the coordinates 
from the perspective space back to the fisheye space. A 4x4 
pixel neighborhood around the mapped pixels is used to 
perform bicubic interpolation and compute the pixel values at 
the fractional points. 
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temporal locality, this algorithm implementation suffers from 
lack of spatial locality when the field of view is large (and a 
large FoV is the reason that fisheye lens are used, in the first 
place). 

B. Arithmetic Operations and Numerical Accuracy 
Inverse mapping uses the inverse tangent operation, divisions, 

and square root, which are expensive in hardware resources. 
Popular methods to approximate such elementary mathematical 
functions in hardware are the CORDIC algorithm [2] and the 
Bipartite Tables (BT) [12]. The BT method decomposes a 
function into a sum of two functions with a smaller input size, 
and requires two smaller look-up tables (LUTs) rather than a 
larger one. It has been reported in [20] that the BT method offers 
a compression factor of one to two orders of magnitude 
compared to a straightforward LUT implementation. We settled 
on the Bipartite Tables because we can make use of the on-chip 
memories of the FPGAs, without expending a lot of logic slices.  

The fractional part of input x is partitioned in three non-
overlapping fields (Figure 4) and the function is approximated 
as:  

),x(xa),x(xa)xx f(x f(x) 201100210 +≈++=  
The two tables provide the coefficients a0 and a1, given the 

smaller inputs (x0,x1) and (x0,x2), respectively[12].  
 The only constraint is that the input x to function f(x) be 

normalized to within the [1,2] range before the tables are 
accessed. This is done by detecting the number of leading zeros 
of the input x, and then, shifting left or right the input x by that 
amount. The output f(x’)= f1(x’)+f2(x’) is corrected back to 
produce the elementary function f(x). All calculations are done in 
the streaming accelerator using fixed-point arithmetic hardware.  

The numerical accuracy of the inverse mapping function is 
important for high-quality image processing. The bicubic 
interpolation algorithm creates severe spatial distortions if the 
granularity of the sub-pixel fractional coordinates is not fine 
enough. In our implementation, we use 25 bits for the fixed-point 
representation of each one of the two coordinates, 12 of which 
are used for the fractional part.  

We use two tables for each one of the atan(x), x , 1/x 
mathematical functions as follows: a 256x16 and a 512x7 table 
for 1/x, a 256x17 and a 256x7 table for x , and a 256x17 and a 
256x7 table for atan(x). We use 15-bits fractional accuracy for 
the output of each of the tables.  

C. Tiling and Pipelining 
A key observation is that the algorithm has a large degree of 

data reuse but not necessarily across a row or column of the 
frame. For instance, in case of the row-wise inverse mapping 
(Figure 3), some fisheye space pixels that have already been  

 fetched to interpolate the perspective space pixels at row y can 
be used again for the next row y+1. Reuse is maximized by 
applying two-dimensional tiling in each frame, a technique used 
by optimizing compilers to improve cache hit rate. We partition 
the output frame in blocks of equal size, and we seek to produce 
all the pixels of one block before we start producing the pixels of 
the next block.  

Figure 5 shows a block of output pixel data taken from the 
frame in Figure 1, and the corresponding rectangular bounding 
block of pixels at the distorted fisheye space needed to 
interpolate the output pixels. Adjacent rectangular boxes in the 
fisheye space will partially overlap due to the curvature of the 
distorted boxes (shown in red in Figure 5). The partial overlap 
implies that pixels close to the edges of the bounding box are 
being fetched from the memory more than once.  

By re-arranging the order of the computations to exploit reuse 
at the block level, we also allow distributing the data in low-
latency on-chip memories, which are readily available in modern 
FPGAs. The advantages of tiling are as follows: 
• All pixel data are kept within a very small and constant 

latency from the computational units, instead of in off-chip 
DRAMs.  

• We exploit the high bandwidth capabilities of on-chip 
SRAMs, which is necessary to achieve high frame rate, and 
high image quality, and 

• We can trade-off control and communication overhead 
between the accelerator and the scalar processor with FPGA 
memory capacity. Larger, more costly FPGAs with more 
on-chip memory can hold larger, and fewer tiles, and 
increase the accelerator dataset. 

Additional optimizations can be applied if we pipeline the 
fisheye transformations, and allow multiple tiles to reside in the 
computational pipeline at any moment. Pipelining increases the 
effective computational bandwidth, and better utilizes the high 
bandwidth of on-chip SRAMs. In our scheme, each pipeline 
stage is dedicated to a single transformation so that successive 
tiles are processed simultaneously. For example, while all pixels 
of tile N are being processed in the bicubic interpolation stage, 
the tile N+1 is in the inverse mapping stage. We call this 
optimization macro-pipelining because it typically takes 
thousands of cycles for each stage to finish its task, and the size 
of each tile is thousands of pixels.  

The accelerator architecture in Figure 6 shows the pipelined 
block diagram of the streaming accelerator for real-time fisheye 
lens distortion correction. The pipeline is partitioned in four 
stages: 

n
x0 x1 x2

n0 n1 n2

Figure 4. The partition of the input x in three fields in the BT 
method 

(a)   Input tile (b) Output tile  
Figure 5. Tiling allows each block of pixels to be  
corrected before the correction of the next block. 
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1. A DMA (prefetch) stage accesses the main memory and 
stores the next tile of pixel data5 to on-chip SRAMs (tile N). 
Multiple SRAMs are used to increase the bandwidth from 
the main memory, and to the next pipeline stage.  Figure 3 
indicates that one of the performance bottlenecks of the 
system is due to the need to read 16 pixels6 from the fisheye 
space to interpolate the value of a single pixel at a sub-pixel 
location. The availability of dual-ported SRAMs in modern 
FPGAs also helps to increase the bandwidth.  
At the same pipeline stage, inverse mapping transforms 
coordinates of tile N from the perspective to the fisheye 
space using the bipartite table method as explained 
previously. The fractional sub-pixel coordinates are stored 
in on-chip SRAMs to be used in the next stage.  

2. At the same time, the bicubic interpolation unit retrieves 
each coordinate pair (x,y) of tile N-1, and uses these 
coordinates as address pointers to read the 4x4 pixel area 
from the input buffers. For each pair (x,y), we first compute 
the coordinates ( ⎣ ⎦ ⎣ ⎦yx , ) of the closest integer pixel at the 
top left direction of the sub-pixel, and we then use these 
coordinates as the basis to retrieve the remaining pixels in 
the 4x4 vicinity. For instance, all the integer pixels within 
the four colored bounding boxes of Figure 3 are retrieved, 
32 bytes at a time, in order to compute the pixel values at 
locations (x-2, y), (x-1, y), (x, y), and (x+1, y) of the 
perspective space. These values are, in turn, stored in the 
next pipeline buffers.  

3. The next two stages are used to perform a 2D convolution-
based low pass filter both vertically and horizontally on tiles 
N-2 and N-3, respectively. The filtering is necessary to 
reduce the high-frequency noise artifacts particularly needed 
when the requested field of view is small. The final stage 
also streams the data out to the main memory.  

To be able to operate all stages simultaneously, we make use 
of dual buffering schemes in each stage. We use the dual-port 
capability of the FPGA on-chip memories exclusively within the 
same pipeline stage to increase bandwidth, and we use two such 
memories to interleave reads and writes at successive stages.  

Referring to Figure 6, at any point during computation, the 
inverse mapping stage writes coordinates to SRAM A of dual 
buffer named Coordinates, and the bicubic interpolation stage 
reads the coordinates of the previous tile from SRAM B. In the 
next accelerator invocation for the next tile, the roles of SRAMs 
A and B are reversed. The eight buffers between the DMA and 

                                                           
5  Pixel data are in YCbCr 422 format  
6  Or 32 bytes: 16 Y bytes, and 16 CbCr bytes 

the bicubic interpolation stage are all dual-ported and double 
buffered and provide a collective bandwidth of 16 bytes/cycle 
for read and 16 bytes/cycle for write. Our Proteus tool is 
parameterized to instantiate any combination of single or dual-
ported SRAM, in a single or dual-buffered configuration.  

Finally, special attention is needed for the first and the last few 
invocations of the accelerator in every frame when the macro-
pipeline is filled and when it is drained. We make use of the 
valid bit mechanism [4][8] to force parts of the macro-pipeline to 
inactivity. For example, the reads out of the pixel buffers 
between the DMA and the BI are set to invalid in the first 
invocation of the accelerator for each frame, because they have 
not been filled yet with pixel data. Likewise, the two input 
streams are de-activated (by setting their stream descriptor size 
to 0), at the last three invocations of the accelerator in order to 
drain the macro-pipeline. The scalar processor is responsible for 
managing the setting of valid bits for the buffers, and the I/O 
stream units.  

IV. FPGA  IMPLEMENTATION  
The fisheye lens distortion correction module is part of an 

FPGA-based SoC which uses a fisheye lens camera. The SoC 
has been implemented in a Virtex-4 LX-80 FPGA and also 
contains a real-time tracking mechanism to detect a remote-
control device used to set the pan, tilt, and zoom parameters in 
the frame. It includes a Microblaze microprocessor, an image 
sensor interface, a multi-ported memory controller, and a number 
of I/O peripherals. The real-time video 
compression/decompression takes place outside the FPGA part. 
The FPGA system operates at 62.5 MHz, and produces 22 VGA 
frames/sec given a megapixel input fisheye image.  

A. Architectural automation  
We use Proteus, our streaming accelerator generation tool to 

quickly perform architectural exploration and hardware 
generation [4][5]. Proteus generates accelerators that use the 
memory-to-memory stream-oriented approach to vector 
processing. The architecture decouples and overlaps data 
accesses and computations and removes the requirements from 
programmers to explicitly schedule memory accesses [8]. This 
approach has several independent load/store units (called stream 
interface units, SMIFs) used to prefetch data from wide, slow 
memories and turn it into narrow, high-speed streams of vector 
elements. A natural consequence is that vector alignment and 
size become irrelevant. 

The Proteus tool allows us to quickly explore different 
architectural scenarios and evaluate the quality of the design in 
terms of computational bandwidth, clock frequency and size. By 
varying system constraints such as the number and size of 
available functional units (multipliers, ALUs, on-chip SRAMs, 
etc.), the average bandwidth and latency to the main memory 
and so on, we obtain a large set for different implementations in 
a few minutes.  

The application code for the fisheye lens distortion correction 
is very compact, and has size of around 800 lines. The code is 
explicitly operating on tiled data, i.e. the tiling and pipelining 
source level transformations are applied manually to the 
functional C code, and not through an optimizing compiler. The 
Proteus tool has been extended to provide facilities for random, 

and data-dependent memory accesses for on-chip memories. 

 
Figure 6. Block diagram of the lens distortion correction pipeline. 
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These extensions do not break one of the characteristics of the 
streaming computing, namely the decoupling between data 
fetching and computations. This is because they are only limited 
to local, constant latency, on-chip memories, and not to accesses 
to external memories or peripherals. The logic and the related 
on-chip memory are part of the data path, and the related load 
and store instruction only support the access of a single item at a 
time. 

Of particular interest is the mechanism to start and terminate 
the accelerator. The user triggers the accelerator by writing to a 
memory-mapped “Start” register, and the accelerator starts 
reading the input streams and writing the output streams 
according to the stream specifications. These specifications, such 
as the starting address, shape and size are also set before the 
accelerator is invoked by the user.  

Each of the pipeline stages of Figure 6 can start and finish 
independently to each other. This not only useful, but also 
critical in this design because the back-end stages should not be 
enabled before the pipeline is filled, and the front-end stages 
should not be enabled when the pipeline is flushing.  

Mechanisms that cause an execution thread running on the 
accelerator or on a stage of the accelerator to terminate include: 
• reading all the stream elements of an input stream, 
• writing all the stream elements of an output stream to the 

memory, and receiving an ACK signal from the system bus 
when the last bus write transaction terminates , 

• performing all the required writes to the on-chip SRAMs  
• finishing all the accumulator iterations required in the DFG.  
When a termination mechanism is activated, an interrupt is 
generated to an accelerator interrupt controller. The controller 
combines all the relative interrupts from the various sources to 
generate an accelerator interrupt to the processor interrupt 
controller. For instance, the accelerator of Figure 6 has sixteen 
interrupt sources: two from the input stream units, one from the 
output stream unit, and thirteen for the writes to the on-chip 
SRAMs. 

The Proteus toolset generates automatically all the necessary 
interrupt circuitry based on the structure of the DFG. It also 
generates all the appropriate registers in the accelerator memory 
map needed to monitor and control the accelerator through the 
Microblaze processor. 

The tool provided a very fast path to architectural exploration 
and final implementation. For the final implementation, we 
started with a streaming DFG description of the application of 
around 800 lines of code, and we generated approximately 
100,000 lines of code of synthesizable Verilog. Moreover, 
Proteus generates the testbench to drive and monitor the Verilog 
code. The testbench includes facilities to initialize internal 
registers of the hardware accelerator, to drive the input streams, 
and to monitor and verify the correctness of the output streams. 
For more information on the Proteus tool the reader may refer to 
[4][5][8]. Readers are referred to [1][6][10] more information on 
the streaming programming model.  

B. Hardware details 
The size of available on-chip SRAM memory in the FPGA 

device determines the tile size in the fisheye lens distortion 
correction algorithm. The LX-80 part has 200, 18 Kbit dual-
ported on-chip SRAMs, and each one can be configured in any 
“aspect ratio” from 16Kx1 to 512x36 [24]. If the output tile is 

Nx8 bits, then the buffer between IM and BI is Nx507, the 
buffers between BI and LPF vertical will be Nx8 and Nx16, and 
the buffers between LPF vertical and LPF horizontal will be 
(N/2)x8 and (N/2)x16. The output data are down-sampled 
horizontally and vertically by two and the last two buffers store 
the pixels after vertical down-sampling only.  

Moreover, we use 8x2=16 buffers at the input to store 422 
pixels and to increase the number of available read ports at the 
BI stage. Four of the eight dual-buffers store Y pixel data, and 
four store Cb/Cr data. The exact number of pixels stored in these 
buffers is dependent on FoV settings and the location of the 
block within the frame. We need to make sure that the buffers 
are large enough to store the pixels for the largest FoV allowed 
in the system, and for all block locations within the input image. 
As Table 1 indicates, the buffer size N for the application was 
6864 pixels, which corresponds to a 128x48 tile size. Four 
additional rows and four additional columns which were added 
to accommodate the boundary conditions of the 3-tap low pass 
filter, increased the tile size to 132x52. The output stream is 
(128/2 x 48/2) = 1536 pixels (or 3072 bytes) per tile, and the 
VGA output is partitioned in (640*480)/1536 = 200 tiles (20 tile 
rows, 10 tile columns). The total processing time per frame 
amounts to 203 blocks, due to the need to fill and flush the 
accelerator pipeline at the beginning and end of each frame. 

To be able to sustain an acceptable frame rate without 
temporal artifacts, the module should process at least 15 
VGA frames/sec at 62.5 MHz. Based on the above 
constraints, the accelerator should spend no more than 328us 
(20526 cycles) for each block processing a 6864-pixel tile.  In 
order to achieve this performance, the accelerator is 
scheduled according to modulo scheduling with an iteration 
interval of two cycles.  

We measured our performance on the Virtex-4, LX-80 
FPGA board at 224us (13995 cycles) per 6864-pixel tile, 
which accounts for 22 fps frame rate. This measurement 
includes both the time for the accelerator to process the tile 
and for the Microblaze to set up the accelerator for tile 
processing. Up to about 400 instructions are executed in 
parallel in every clock cycle at the steady state portion of the 
modulo schedule of the streaming accelerator. 

A high performance, priority-based, multi-port, memory 
controller serves the two I/O ports of the accelerator and 
additional peripherals with real time requirements such as the 
image sensor interface. A high-speed dedicated PLB bus drives 
the I/O streaming data from and towards the multi-ported 
memory controller. In our design, a PLB write burst length of 16 
is used to transfer one 128-byte row of the output tile8. The read 
accesses, which dominate the accelerator bandwidth, are also 
burst, but the burst size is variable depending on the size of the 
row of each input tile. Typically, 2-3 bursts of size 16 are needed 
to read an input. Each write burst transaction requires 20 cycles 
(4 cycles overhead), and each read burst transaction requires 33 
cycles (17 cycles overhead). Using bursting to access data from 
the DRAM is critical to meeting the real time requirements of 
the application, and to reduce memory latency. 

An arbitration module regulates the access of the I/O 
streaming units to the dedicated PLB bus that connects the 
                                                           

7  Each entry stores 2, 25-bit fractional coordinates  
8 Note that the PLB bus size is 8 bytes and each output tile is 64x24 pixels 
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accelerator to one of the ports of the memory controller. The 
arbitration unit uses round-robin and is also generated 
automatically by the Proteus tool to match the characteristics of 
the streams. 

The dataset of each accelerator invocation is a tile of pixels 
and the accelerator is called 203 times for every frame. Table 2 
shows the sequence of events between the scalar processor and 
the Proteus accelerator. The scalar processor sets up the 
accelerator for the next tile in the frame by modifying the stream 
descriptors (e.g. starting address of the input and of the output 
stream, span, skip of the input stream, etc.), and triggers the start 
by setting a memory-mapped register in the accelerator. At the 
end of the tile processing, the accelerator generates an interrupt 
back to the processor.  

C. Hardware-Software interaction 
A new setting of the region of interest (ROI) or the FoV 

(zoom factor) disrupts this execution flow. The scalar processor 
first reads the coordinates of the ROI center point (ucp, vcp) from 
the tracker and transforms them in the perspective space using 

forward mapping. The forward mapping operation is only carried 
out for a single point when the ROI settings change, and is 
therefore out of the critical path.  

The accelerator then proceeds to use the scalar version of the 
inverse mapping algorithm to compute the fisheye space 
coordinates of the top-left pixel TL for each of the 200 tiles of 
the frame. This is necessary because these addresses will be fed 
to the accelerator to be used as a starting address for the input 
streams. This part of the code is also used to determine the 
bounding boxes, and therefore, the skip and span settings of the 
input pixel stream. For example, the width of the bounding box 
BBi  is given by: 

⎡ ⎤ dw),U( U),U( UW i) TL(TL(i)i) TL()TL(iBBi += +−+++ 101101 minmax
where UTL(i) is the column coordinate of the top left pixel of the 
BBi at the fisheye space. 

A. Performance evaluation 

Using the bit-exact, software version of the fisheye lens 
distortion correction algorithm, we compared the performance of 
the hardware accelerator to the performance of the Intel Core 2 
Quad multi-core processor. In order to make a fair comparison, 
we optimized the code to exploit the quad-threaded, SIMD 
architecture of Core 2 Quad by using the OpenMP library and by 
manually rewriting the inner loops of the IM, BI and LPF kernels 
using the SSE ISA extensions. We used Intel’s icc compiler with 
the O3 optimization flag to enable aggressive optimizations. 
Moreover, we make full utilization of the processor’s FP units 
for the computation of the fractional coordinates.  

Table 3 shows the execution time of the software 
implementation running on the 2.5 GHz Core 2 Quad processor 
and our FPGA hardware running on the Virtex-4 LX-80, 62.5 
MHz FPGA. The fully optimized Core 2 Quad version cannot 
meet real-time requirements at only 5.26 fps processing rate and 
is very inefficient in handling such streaming workload. 

Table 3 also shows that the FPGA solution is 167.2 times more 
efficient in utilizing its hardware resources than the high 
performance processor, and 668.8 times more efficient per each 
thread running on a single core. These numbers are a testament 
of the superiority of reconfigurable over general purpose 
computing for application specific platforms.  

V. RELATED WORK 
Algorithms for fisheye lens distortion correction have been 

proposed for over two decades [11]. Most implementations that 
we know of are based on software running on a desktop 
processor, but there are embedded systems for fisheye lens 
distortion correction using FPGAs[14]. 

There has been an intense interest in the research community 
in the last decade to automate the architectural process for ASIC 
of FPGA tool flows starting from a high level representation like 
C, Java, Matlab, DFGs etc. [9].  

Relevant projects and commercial tools include the OCAPI 
tool from IMEC [21], the DEFACTO compiler from USC [28], 
the ASC streaming compiler effort from the Imperial College 
[18], and the CASH compiler from CMU that maps a C 
application onto asynchronous circuits [25]. The Impulse-C [19] 
and Handel-C [7] languages are efforts to utilize C with 
extensions as a high level RTL language for FPGA design. At an 
even higher level of abstraction, AccelChip [3] is 

Table 1. Percentage resource utilization and BRAM sizes for 
the Virtex-4 LX-80 FPGA 

Logic Slices 11082 (30%) 
DSP48 units 71 (88%) 
BRAMs 109 (54.5%) 

BRAM types 
(Number per type) 
 

4096 x 8 (16) 
13728 x 50 (1) 
6864 x 8 (2) 
6864 x 16 (2) 
3432 x 8 (2) 
3432 x 16 (2) 
Bipartite Tables (see 1)) 

Table 2. Control and Monitor code running on the Microblaze 
processor. 

Power Up Sequence : Load the Bipartite Tables 
while (1) { 
  Read the center point (CP) coordinates of the fisheye ROI from  
  the tracking module and call forward_mapping() to compute  
  the rotation matrix (rij); 
  Call inverse_mapping() to compute the fisheye space  
  coordinates of the top left pixels (u0,0, v0,0) for each of the 200  
  blocks of the perspective space; 
  Compute the sizes and locations of the bounding boxes for the 
  input tiles; 
  /* Main loop for each frame */ 
  while (values for Pan, Tilt, Zoom remain unchanged) { 
   tile = 0;    
   for (i = 0; i < 203; i++) { 
        Set up stream descriptors and accelerator for tile;  
        Trigger accelerator; 
        Wait for interrupt from accelerator; 
        if (tile < 200) tile++; 
   } 
   /* End of frame checks */ 
   Check for new values for Pan, Tilt, or Zoom; 
  } 
 } 
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commercializing a compiler to automatically generate gates from 
Matlab code. The PICO project [15] incorporated a lot of 
concepts from earlier work on VLIW machines, and described a 
methodology to generate a VLIW engine along with an 
accelerator optimized for a particular application. The C2H tool 
from Altera Corporation and the Catapult-C from Mentor 
Graphics use an ANSI-C to gates methodology to automate 
architectural synthesis.  

VI. CONCLUSIONS 
In this paper, we have presented a pipelined architecture in a 

reconfigurable platform for a fisheye lens distortion correction 
algorithm. We follow a methodology that includes coding a 
given functional code with source-level optimizations in a 
streaming language. This is done so that our ESL tool, Proteus, 
can efficiently map the streaming application into hardware 
accelerators. Design issues such as memory bandwidth are 
alleviated by tiling and pre-fetching image data from memory.  

Using a design automation tool, we were able to quickly scan 
the space of Pareto-optimal implementations for a variety of 
area, throughput and clock frequency settings, and meet the 
system frame rate requirements.  

The most interesting future direction is to investigate the 
automation of such source level optimizations with a minimal 
user feedback. Although there have been considerable academic 
research in this subject, and some commercial tools have 
appeared in the market, no solution for an efficient software-
oriented, C-to-gates compiler has become mainstream.  
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Table 3. Performance comparison between the Core 2 Quad 
and the FPGA implementation 

 

Implement. Frame 
rate 
(fps) 

Speedup 
over SW 

Speed 
Up per 
Hz  

Speed Up 
per Hz per 
thread 

Software 5.26 1 1 1 
Hardware 
(FPGA) 

22 4.18 167.2 668.8 
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